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Entanglement and magic are being generated over time; how do they affect 
the resulting universality (if any), and how quickly is this achieved? 
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Q. chaotic Hamiltonian/
circuit evolution

A

B

ρA(t) = TrB( |Ψt⟩⟨Ψt | )

Quantum Thermalization

lim
t→∞

ρA(t) → ∝ e−βHA

Universality:

(Gibbs state)

Principle:
2nd law of thermodynamics: 


Minimize free energy  

Maximize von Neumann entropy  


subject to conservation laws

↔
S(ρA)
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Beyond quantum thermalization?
Examine assumptions of framework:

A

B ρA = TrB( |Ψ⟩⟨Ψ | ) Reduced density matrix

• Bath is assumed inaccessible! ↔
• Access only to local observables ⟨OA⟩

Quantum Simulators allow us to probe beyond this framework:

Rydberg atomsSuperconducting qubitsCold atomsTrapped ions

Microscopically-resolved global measurements  

Access beyond local observables!

⟹

[Duke, Innsbruck, Honeywell…] [Munich, Harvard, MIT…] [Google, IBM,…] [Harvard, Caltech, Paris,…]
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Measurements in quantum simulators
 
 
 
 
 
 

010110101101001
101010111011011
110110101101001
000101100101110
111010101000010
011110101101001
110101000101011
A B

• Access to conditional local quantum observables:

⟨OA⟩zB
:= Expectation value of  conditioned upon observing state OA zB

Hybrid quantum-classical observable, beyond the reduced density matrix 
Theoretical framework to capture such quantities?

Quantum simulator

The same zB



Projected ensemble
[PRX Quantum 4 (1), 010311 (2023), Nature 613 7944 (2023)]

|Ψ⟩

B A

Projected ensemble 
Collection of probabilities + pure quantum states

ℰA = {p(zB), |ψA(zB)⟩}

Measure bit-string zB

|ψA(zB)⟩ =
(𝕀A ⊗ ⟨zB | ) |Ψ⟩

p(zB)

p(zB) = ⟨Ψ | 𝕀A ⊗ |zB⟩⟨zB |Ψ⟩

|ψA(zB)⟩ Projected state
p(zB)

Probability

ρQC = ∑
zB

p(zB) |ψA(zB)⟩⟨ψA(zB) | ⊗ |zB⟩⟨zB |

⏟Quantum system Classical measurement

equivalently



Understanding the projected ensemble

ρA ↦ {p(ψ), |ψ⟩}

Distribution over Hilbert space Physically motivated unraveling 
of density matrix
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Fundamental questions
1. Does the projected ensemble tend to a universal limiting distribution in 

quantum dynamics?

lim
t→∞ ℰA → ℰ*A

?

2. If so, what are the possible limiting distributions and what is 
the physical principle behind their emergence?

This talk:  
Deep thermalization, symmetries, and  

quantum information theoretic principles
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• Note: average message is 



Projected ensemble as a  
quantum communications protocol

[Liu, Huang, WWH, arXiv: 2405.05470]
Also [Mark et al, arXiv: 2403.11970]

B: Bob (Bath) A: Alice (Local experimentalist)

|Ψ⟩ → ℰA = {p(zB), |ψA(zB)⟩}

• PE can be understood as an encoding of classical data  into the quantum 
state 

zB
|ψA(zB)⟩

zB
 with prob |ψA(zB)⟩ p(zB)

Q: How much information is extractable?

• Note: average message is 
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B: Bob (Bath) A: Alice

zB

 with prob |ψA(zB)⟩ p(zB)
mi

• Alice measures with POVM  and tries to ascertain  from measurement 
outcome 

{Mi} zB
mi

I(ℰ : M)
• Mutual information between messages and measurement outcomes:

• Prior to measuring, Alice’s prior belief is that  is sent with probability .  
Entropy is 

zB p(zB)
H(ℰ) = − ∑ p(zB)log p(zB)

• After measuring, Alice has posterior belief . Average entropy 
is 

p(zB |mi) = p(zB, mi)/p(mi)
H(ℰ |M) = − ∑

i

p(mi)∑
zB

p(zB |mi)log p(zB |mi)

• Averaged information gain is I(ℰ : M) = H(ℰ) − H(ℰ |M)
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Accessible information

B: Bob (Bath) A: Alice

zB

 with prob |ψA(zB)⟩ p(zB)
mi

• Alice measures with POVM  and tries to ascertain  from measurement 
outcome 

{Mi} zB
mi

I(ℰ : M)
• Mutual information between messages and measurement outcomes:

Iacc(ℰ) := sup
M∈POVM

I(ℰ : M)
• Accessible information of ensemble:

“Maximal classical information extractable from quantum ensemble”

Q: What should we expect the accessible information of the 
projected ensemble to be?
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Bounds on accessible information

• For projected ensemble,  = = reduced density matrix on A, determined by 
standard quantum thermalization

ρ ρA

|Ψ⟩ =

ρ

U

|z1⟩|z2⟩ |zNB
⟩⋯|z2⟩|z3⟩ |z4⟩|z5⟩|z6⟩|z7⟩|z8⟩|z9⟩|z10⟩

UHaar

Our intuition: if nature is scrambling, we expect minimal information transmission!  
I.e., nature is a lousy quantum communications channel = 

“Deep thermalization”

 Q(ρ) ≤ Iacc(ℰ) ≤ S(ρ)
Holevo bound: Von 
Neumann entropy

Jozsa, Robbs, Wootters ’94 
bound: subentropy
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ℰ* = arg maxℰS(ℰ) s.t. Mean(ℰ) = ρA

S(ℰ) := − Iacc(ℰ)
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for deep thermalization =  

Principle of minimal accessible information

ℰ* = arg maxℰS(ℰ) s.t. Mean(ℰ) = ρA

S(ℰ) := − Iacc(ℰ)

[C Liu, QC Huang, WWH, arXiv: 2405.05470], Also [Mark et al, arXiv: 2403.11970]

(First moment known from 
regular thermalization)

• For quantum spin systems, this limiting ensemble was derived by Jozsa, Robbs, 
Wootters [PRA ’94], and is known as the Scrooge ensemble

ρA

Unraveling of  into an ensemble of pure states which yields the least information 
(i.e. most stingy)

ρA
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3. Sample  with probability density   where  is the 
uniform Haar measure and  the dimension of the Hilbert space

|ψ⟩

|ψ⟩ → ρ |ψ⟩
|Ψ(ψ)⟩ := ρ |ψ⟩/ ⟨ψ |ρ |ψ⟩

|Ψ(ψ)⟩ p(ψ)dψ = D⟨ψ |ρ |ψ⟩dψ dψ
D

The Scrooge ensemble is defined as the ensemble of pure states:

ℰScr.(ρ) = dψ D⟨ψ |ρ |ψ⟩

p(ψ)

,
ρ |ψ⟩

⟨ψ |ρ |ψ⟩

|Ψ(ψ)⟩

ρ

(Note:  i.e. uniform or Haar ensemble)ℰScr.(𝕀/d) = ℰHaar
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Bell 
measurements|ψA(zB)⟩ ∼ |ψHaar⟩

Key idea: Haar random states come from stochastic 
quantum computation in space, induced by measurements 

(akin to measurement-based quantum computation)

Dual unitaries



Previous studies have been confined to spin (and fermion) systems, with local 
bounded Hilbert space.


Q: Do the deep thermalization universality and generalized maximum entropy 
principle apply in a physically distinct system, e.g. systems of many bosons?

Continuous-variable system = Unbounded Hilbert space  

no notion of Haar random states to ‘distort’ to construct Scrooge ensemble


(For the experts: no “2-designs” [Iosue, Sharma, Gullans, Albert, PRXQ 14,011013 (2024)])

⟹



Deep thermalization in Gaussian 
Continuous-Variable (CV) systems

Gaussian state with 
mean boson density ν

Gaussian 
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Gaussian measurement  yields outcome σB rB

Projected state is also a Gaussian state

[Liu, Huang, WWH, arXiv: 2405.05470]



Deep thermalization in Gaussian 
Continuous-Variable (CV) systems

Gaussian state with 
mean boson density ν

Gaussian 
brickwork unitary

Gaussian measurement  yields outcome σB rB

Projected state is also a Gaussian state

[Liu, Huang, WWH, arXiv: 2405.05470]

q

Projected ensemble is a distribution of Wigner functions, 
characterised by displacement  and quantum 

covariance matrix 
rA
ṼA

Distribution of rA

Wigner function of  
centered projected state
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Distribution of rA
Wigner function of  

centered projected state

Ṽ A → 𝕀A

Our claim: universality arises in 
thermodynamic limit 

rA → 𝒩(0, ν𝕀A)dDistribution of 
displacements:

Covariance of each 
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Collection of unsqueezed coherent states
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Deep thermalization in Gaussian 
Continuous-Variable (CV) systems

Distribution of rA
Wigner function of  

centered projected state

Ṽ A → 𝕀A

Our claim: universality arises in 
thermodynamic limit 

rA → 𝒩(0, ν𝕀A)dDistribution of 
displacements:

Covariance of each 
projected state:

Rigorous proof for random Gaussian states with mean ν

Numerical evidence in brickwork circuit models

Limiting ensemble has minimal accessible information which we call 
“Gaussian Scrooge Distribution” (analog of Scrooge in spin systems but 
for Gaussian CV systems) c.f. [Holevo, J. Math. Phys. 62, 092201 (2021)]

Collection of unsqueezed coherent states

[Liu, Huang, WWH, arXiv: 2405.05470]
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• Scrooge ensemble was predicated upon dynamics maximally hiding information


• But, measurements in symmetry-respecting basis can extract more information 
than measurements in symmetry non-respecting basis, e.g. think of charge


|b3⟩|b4⟩|b5⟩|b6⟩|b7⟩|b8⟩|b9⟩|b10⟩

|Ψ⟩ =

ρ

U

|b2⟩|b1⟩ |bNB
⟩⋯|ψA(zB)⟩

Measurement basis which reveals information or not

Information scrambling dynamics

• Leads to competition between:

• Also, have to account for charge fluctuations in initial state!

[Chang, Shrotriya, WWH, Ippoliti, 2408.15325]



Measurement basis matters!
To be concrete, consider a local on-site symmetry , e.g. .


Then a global state can be written 

[Q, U] = 0 Q = ∑
i

Zi

|Ψ⟩ = ∑
Q

p(Q) |ΦQ⟩
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Then a global state can be written 

[Q, U] = 0 Q = ∑
i

Zi

|Ψ⟩ = ∑
Q

p(Q) |ΦQ⟩

Charge revealing { |z⟩}

ℰPE → ∑
QB

π(QB)ℰScr.(ρA(QB))

• Convex sum of Scrooges, depending 
on charge measured 


• Represents stingy unraveling up to 
Bayesian update of belief of state on A 

• Universal: only depending on charge 
distribution 

QB
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Random, charge-conserving U(1) circuits

Charge fluctuations:  

Initial product state: 

Compute trace distance of k = 2 moment between ensembles

ρ(k)
ℰ = 𝔼ϕ∼ℰ( |ϕ⟩⟨ϕ | )⊗k

All k-point correlations of an ensemble

Δ(k)(ℰ, ℰ′ ) :=
1
2

ρ(k)
ℰ − ρ(k)

ℰ′ 1

Trace distance = Optimal distinguishability 
with k-copies of state between ensembles 
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Numerical confirmation
Random, charge-conserving U(1) circuits

Charge fluctuations:  

Initial product state: 

Compute trace distance of k = 2 moment between ensembles

; -basis measurementθ = π/20 z
Target: Generalized Scrooge ensemble

 (Neel); -basis measurementθ = 0 x
Target: Haar ensemble

 finite size effects1/N

Δ(2)(t) Δ(2)(t)



Summary of current understanding of  
deep thermalization

Constraints/ 
Conservation 

law

Charge 
distribution in 

initial state 

Measurements in 
charge revealing basis

None 

e.g. Floquet, circuits N/A ℰHaar

None; Q = N/2

Sp
in

s/
Fe

rm
io

ns

ℰBos. Gaus. Scr.Gaussian, U(1)

Measurements in charge 
non-revealing basis

N/A

U(1) charge
None; Q ≠ N/2

Equilibrium; βμ = 0
Equilibrium; βμ ≠ 0

General

⊕QA
p(QA)ℰHaar(QA)

⊕QA
p(QA)ℰHaar(QA)

ℰHaar
ℰScr.

 depending on ℰGen. Scr. p(Q)

ℰHaar
ℰScr.

ℰHaar (Numerical)
?
?

Energy
Product state (Gaussian) at

β = 0
Product state (Gaussian) at 

β ≠ 0

ℰHaar

ℰScr.ℰGeneralized. Scr.

ℰGen. Scr. ≈ ⊕EA
p(EA)ℰHaar(EA)

Bo
so

ni
c 

C
V

Squeezed product state 
with mean number ν

Measurements in any 
Gaussian basis

Measurements in  
Fock basis

?

Non-Gaussian,

General

? ??



Conclusions
• Novel equilibration universality (Deep Thermalization) beyond standard quantum 

thermalization

• Underpinned by Generalized Maximum Entropy Principles from quantum 
information theory

• Rich host of emergent universal limiting ensembles constrained by symmetries

• Questions: Time-scales of deep thermalization; how is this related to 
entanglement and magic generation? Connections to OTOCs, quantum error 
correction? Applications for quantum information science?

 
New paradigms in quantum many-body       f 

dynamics from quantum information theory!!          f
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• Assume initial state is random but has definite charge Q0
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“charge revealing basis”
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Charge conservation: case study I
• Assume dynamics conserves charge ,     [U, Q] = 0 Q = ∑ σz

i

• Assume initial state is random but has definite charge Q0

+

+

+

+

+

+⋯

• Measure  in the computational basis  
“charge revealing basis”

B z

• Each bit-string  has a charge zB QB

• This immediately tells us  has 
charge 

|ψA(zB)⟩
QA = Q − QB

zB s.t. QB = 5

z

• We thus expect limiting projected 
ensemble to block-diagonal (direct-sum):

ℰPE → ⊕QA
p(QA)ℰHaar,A(QA)

We rigorously prove this statement in our paper
QA = 0

[Chang, Shrotriya, WWH, Ippoliti, 2408.15325]
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Charge conservation: case study II
• Assume dynamics conserves charge ,     [U, Q] = 0 Q = ∑ σz

i

• Assume initial state is random but has definite charge Q0

+

+

+

+

+

+⋯

• Measure  in the computational basis  
“charge non-revealing basis”

B x

• Each bit-string  yields a state 
 but we do not gain more 

information about its character

xB
|ψA(xB)⟩

x

Q: General theory incorporating charge fluctuations?

• We thus expect limiting projected 
ensemble to be a single Scrooge:

ℰPE → ℰScr,A

[Chang, Shrotriya, WWH, Ippoliti, 2408.15325]



(Based on calculations using replica trick)
Theory for charge revealing measurements

• Let the initial state have charge fluctuations , i.e., p(Q) |Ψ⟩ = ∑
Q

p(Q) |ΦQ⟩
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• Average state should be  which unravels 

into a Scrooge distribution 
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• Let the initial state have charge fluctuations , i.e., p(Q) |Ψ⟩ = ∑
Q

p(Q) |ΦQ⟩

• Measure in a charge revealing basis (e.g. ), to get  which carries charge . 
This occurs with probability 

z zB QB
π(QB) = ∑

Q

π(QB |Q)p(Q) π(QB |Q) = (NA

QA) (NB

QB) (N
Q)

−1

• Knowledge of  updates our belief of : /QB QA π(QA |QB) = π(QB |Q)p(Q) π(QB)

• Average state should be  which unravels 

into a Scrooge distribution 

ρA(QB) = ∑
QA

ρHaar,A(QA)π(QA |QB)

ℰScr.(ρA(QB))

• Limiting distribution will be a convex sum over Scrooges (generalized Scrooge):

ℰPE → ∑
QB

π(QB)ℰScr.(ρA(QB))

Note: it is universal, depending only on p(Q)

[Chang, Shrotriya, WWH, Ippoliti, 2408.15325]
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(Partial) Theory for charge non-revealing 
measurements

• Let the initial state have definite charge p(Q) = δQ,Q0

• Measure in a charge non-revealing basis (e.g. ), to get x xB

• This does not yield new information about charge on , so prior and posterior 

probabilities are both 

A

π(QA |Q0) = (NA

QA) ( NB

Q0 − QA) ( N
Q0)

−1

• Averaged state should be  ρA = ∑
QA

π(QA |Q0)ρHaar,A(QA)

• Limiting distribution will be single Scrooge (stingy unraveling of ρA)

ℰPE → ℰScr.(ρA)
Note when , Q0 = N/2 ℰScr. → ℰHaar

[Chang, Shrotriya, WWH, Ippoliti, 2408.15325]


