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Entanglement and magic are being generated over time; how do they affect
the resulting universality (if any), and how quickly is this achieved?
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Quantum Thermalization

Q. chaotic Hamiltonian/
circuit evolution :

pa(t) = Trg(| W) (W, |)

AAAAAA e 2nd law of thermodynamics:
Sfatistical ; Minimize free energy <>
Plivsics Maximize von Neumann entropy S(p,)
subject to conservation laws

Universality: Principle: J

lim p,(f) = x e PHa

— o0

(Gibbs state)
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Beyond quantum thermalization?

Examine assumptions of framework:

pr = Tep( | P)(W|) Reduced density matrix

------------------------------------------
. ‘e
*

e Bath is assumed inaccessible! «

« Access only to local observables (O, )

Trapped ions Cold atoms Superconducting qubits Rydberg atoms
[Duke, Innsbruck, Honeywell...] [Munich, Harvard, MIT...] [Google, IBM,...] [Harvard, Caltech, Paris,...]

\/ Microscopically-resolved global measurements —
Access beyond local observables!



Measurements in guantum simulators

Quantum simulator
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e Access to conditional local quantum observables:

<OA>ZB := Expectation value of O, conditioned upon observing state z;



Measurements in guantum simulators

010110101101001

A '\
110110101101001

| > *— The same 2B

Quantum simulator 011110101101001 A/

A B

* Access to conditional local qguantum observables:

<0A>ZB := Expectation value of O, conditioned upon observing state z;

Hybrid quantum-classical observable, beyond the reduced density matrix
Theoretical framework to capture such quantities?



Projected ensemble

[PRX Quantum 4 (1), 010311 (2023), Nature 613 7944 (2023)]

Measure bit-string zp

Probability

P(zp)
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| WA(ZB)) Projected state

ey = 4@ G
o \/P(ZB)
p(zp) = (|1, ® | z)(z5 | ¥)

Projected ensemble

Collection of probabilities + pure quantum states

&y = {P(ZB)a |WA(ZB)>}

equivalently

Poc = ZP(ZB) | wa(zp) (Wa(zp) | ® | z2p)(z5]

<B

N —— —
Quantum system

Classical measurement
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Understanding the projected ensemble

-f;f.:.é'.: BRI
R ox pa = o), lw)}
. PR -."'},-'-.%’; p
LWLV 00 %o
H *.:3 o g >

Physically motivated unraveling

Distribution over Hilbert space of density matrix



Fundamental questions

1. Does the projected ensemble tend to a universal limiting distribution in
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Fundamental questions

1. Does the projected ensemble tend to a universal limiting distribution in
quantum dynamics?

1im§§Ai> g;!:

=00

2. If so, what are the possible limiting distributions and what is
the physical principle behind their emergence?

This talk:
Deep thermalization, symmetries, and
quantum information theoretic principles



[Liu, Huang, WWH, arXiv: 2405.05470]
Also [Mark et al, arXiv: 2403.11970]

Projected ensemble as a
quantum communications protocol
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Projected ensemble as a
quantum communications protocol

V) — &, = {p(zp), | ys(zp))}

* PE can be understood as an encoding of classical data 75 into the quantum
state | y;(25))

Inl >
|
B: Bob (Bath) _ A: Alice (Local experimentalist)
| w4(zp)) with prob p(zp)
<B

Q: How much information is extractable?
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o
| . :> A: Alice
B: Bob (Bath) w | w4 (zg)) with prob p(zg) %
m,

<B

e Alice measures with POVM { M} and tries to ascertain zz from measurement
outcome mi,

* Mutual information between messages and measurement outcomes:

[(& : M)
4 )

* Prior to measuring, Alice’s prior belief is that z5 is sent with probability p(zz).
Entropy is H(&) = — Z p(zp)log p(zp)

* After measuring, Alice has posterior belief p(zgz | m,) = p(zz, m;)/p(m;). Average entropy

s H(E | M) = = )" p(m)) )" p(zg|m)log p(zg|m;)

k- Averaged information gainis (& : M) = H(&) — H(& | M) J
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e Alice measures with POVM { M} and tries to ascertain zz from measurement
outcome mi,

* Mutual information between messages and measurement outcomes:

[(& : M)
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e Accessible information of ensemble: Quaritie

Computation
and Quantum ’
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“Maximal classical information extractable from quantum ensemble”
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Accessible information

[ )
| . :> A: Alice
B: Bob (Bath) w | w4(zg)) with prob p(zg) @
m,

<B

e Alice measures with POVM { M} and tries to ascertain zz from measurement
outcome mi,

* Mutual information between messages and measurement outcomes:

(& : M)
e Accessible information of ensemble: B
and Quantum
y Information y
Iacc(%) .= Sup I(Cd‘op . M) =
MePOVM Y
“Maximal classical information extractable from quantum ensemble”

\_

Q: What should we expect the accessible information of the
projected ensemble to be?
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Bounds on accessible information

Jozsa, Robbs, Wootters '94 SUTET Holevo bound: Von
bound: subentrop Neumann entropy
o sebenton Q(p) < 1,.(&) < S(p) :
Q(p) = — Z(H,\k—Al>'\’°ln’\k L S(p)zz—Z)\kln)\k
k=1 \l#k k—1

e For projected ensemble, p = p,= reduced density matrix on A, determined by
standard quantum thermalization

|2l 200 | 23) | 24) | 25) | 2621 2201 28)] 290 210) |ZNB>

V) = [ Uliaar J

Our intuition: if nature is scrambling, we expect minimal information transmission!
l.e., nature Is a lousy quantum communications channel =
“Deep thermalization”




Generalized maximum entropy principle
for deep thermalization =
Principle of minimal accessible information

r[C Liu, QC Huang, WWH, arXiv: 2405.05470], Also [Mark et al, arXiv: 2403.11970] R
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Generalized maximum entropy principle
for deep thermalization =
Principle of minimal accessible information

([C Liu, QC Huang, WWH, arXiv: 2405.05470], Also [Mark et al, arXiv: 2403.11970] R
b — —
&* = argmax,S5(&) st Mean(&) = p,
(First moment known from
S( g) = — Iacc( g) regular thermalization)

\_ J

* For quantum spin systems, this limiting ensemble was derived by Jozsa, Robbs,
Wootters [PRA ’94], and is known as the Scrooge ensemble

Unraveling of p, into an ensemble of pure states which yields the least information
(i.e. most stingy)
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uniform Haar measure and D the dimension of the Hilbert space
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1. Let|y) be a normalized state.

2. Distort state |y) — \/ﬁ ly) (“rho-distortion”) and define normalized state

[PW) = +/p I/ wlply)

3. Sample | ¥ (y)) with probability density p(y)dy = D{y | p |w)dy where dy is the
uniform Haar measure and D the dimension of the Hilbert space

The Scrooge ensemble is defined as the ensemble of pure states:
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Eser(p) = dl/f (wlplw),

p(l/f)



Scrooge ensemble &, (p)

1. Let|y) be a normalized state.

2. Distort state |y) — \/,5 ly) (“rho-distortion”) and define normalized state

[PW) = +/p I/ wlply)

3. Sample | ¥ (y)) with probability density p(y)dy = D{y | p |w)dy where dy is the
uniform Haar measure and D the dimension of the Hilbert space

The Scrooge ensemble is defined as the ensemble of pure states:

plw)
%Scr.(p): dWD<W|p|W>9 \/_
" Aylplwy)

p(y) -
Y (y))

(Note: &5, (1/d) = &y, i.e. uniform or Haar ensemble)
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Emergence of universal ensembles Iin

Haar ensemble

quantum many-body systems

Quantum circuit evolution
(dual unitaries, RMT)
(Analytic proofs)

L1 1 1 1 1
L)
)

T T T T 1
10)/0)10)[0)]0)] 0)
[WWH et al, PRL’22]
[Ippoliti,& WWH, PRXQ '22]
[lppoliti & WWH, Quantum ’22]

[Claeys et al., Quantum ’'22]
Dual unitaries g

At lwa(28)) ~ [ Whaar) ¥  measurements
AN |
+3
U(t) = +2
+1
. -3 2 1 0 41 42 +3 --.

>

Key idea: Haar random states come fromxstochastic
quantum computation in space, induced by measurements
(akin to measurement-based quantum computation)



Previous studies have been confined to spin (and fermion) systems, with local
bounded Hilbert space.

Q: Do the deep thermalization universality and generalized maximum entropy
principle apply in a physically distinct system, e.g. systems of many bosons?

Continuous-variable system = Unbounded Hilbert space =—
no notion of Haar random states to ‘distort’ to construct Scrooge ensemble

(For the experts: no “2-designs” [losue, Sharma, Gullans, Albert, PRXQ 14,011013 (2024)])



[Liu, Huang, WWH, arXiv: 2405.05470]

Deep thermalization in Gaussian
Continuous-Variable (CV) systems

Projected state is also a Gaussian state

% (ra(rs), Va))

A@_( \_}

. J

A

Gaussian
Gaussian state with brickwork unitary

mean boson density v

Gaussian measurement oy yields outcome rp
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Deep thermalization in Gaussian
Continuous-Variable (CV) systems

Projected state is also a Gaussian state

Wigner function of
4 (ra(tn), Va)) Distribution of r, centered projected state

A@_( \_}

4 N )
Ec = {p(ra),|¥(ra,Va))}

Projected ensemble is a distribution of Wigner functions,
characterised by displacement r, and quantum

Gaussian _ 4
Gaussian state with brickwork unitary \ covariance matrix VA )

mean boson density v

Gaussian measurement oy yields outcome rp
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Deep thermalization in Gaussian
Continuous-Variable (CV) systems

f Our claim: universality arises in \
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Covariance of each
projected state:
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Deep thermalization in Gaussian
Continuous-Variable (CV) systems

f Our claim: universality arises in \
thermodynamic limit

Distribution of d N
r, % 40,0, |

displacements:

Wigner function of

Distribution of ', centered projected state

Covariance of each
projected state:

Gollection of unsqueezed coherent stateD

\/ Rigorous proof for random Gaussian states with mean v

\/ Numerical evidence in brickwork circuit models

\/ Limiting ensemble has minimal accessible information which we call
“Gaussian Scrooge Distribution” (analog of Scrooge in spin systems but

for Gaussian CV systems) c.f. [Holevo, J. Math. Phys. 62, 092201 (2021)]
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Symmetries and deep thermalization

Q: How do symmetries change the universal limiting distribution?

e Scrooge ensemble was predicated upon dynamics maximally hiding information

e But, measurements in symmetry-respecting basis can extract more information
than measurements in symmetry non-respecting basis, e.g. think of charge

* |eads to competition between:

Measurement basis which reveals information or not

[WAGR)) 1oy b 16 b BB B Bodbre) = 1)
| I I I I I O
| lIj> — [ Information scrg]mbling dynamics ]

* Also, have to account for charge fluctuations in initial state!
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Measurement basis matters!

To be concrete, consider a local on-site symmetry [Q, U] = 0, e.g. Q0 = Z Z.
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Then a global state can be written | V) = Z p(O)|Dp)
0,
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Measurement basis matters!

To be concrete, consider a local on-site symmetry [Q, U] = 0, e.g. Q0 = Z Z.

l

Then a global state can be written | V) = Z p(O)|Dp)
0,

Charge non-revealing, e.g. { | x)}

4 )
Epp = Eger(Pa)

(Normal) Scrooge ensemble

= J

e Assuming p(Q) = 5Q,Q0

e When Qy = N/2, reduces to Haar
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Measurement basis matters!

To be concrete, consider a local on-site symmetry [Q, U] = 0, e.g. Q0 = Z Z.

l

Then a global state can be written | V) = Z p(O)|Dp)

0,
Charge non-revealing, e.g. { | x) } Charge revealing { | 2) }
4 ) 4 )
Epp = Eser(pa) Epp—~ D, MQp)E5er (PA(Qp))
Op
9 (Normal) Scrooge ensemble y . Generalized Scrooge ensemble y
o Assuming p(Q) = 5Q 0 e Convex sum of Scrooges, depending
0]

on charge measured Qg

e When Qy = N/2, reduces to Haar , _
* Represents stingy unraveling up to

Bayesian update of belief of state on A

e Universal: only depending on charge
distribution p(Q)
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Random, charge-conserving U(1) circuits
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Compute trace distance of k = 2 moment between ensembles

r P(k)_[E¢~%(|¢><¢|)®k \

All k-point correlations of an ensemble

AR (g, &) :Z% H p — p® H

Trace distance = Optimal distinguishability
with k-copies of state between ensembles
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Initial product state: [¥(0)) = [(cos 8]0) +sin 6]1)) ® (sin8|0) + cos §]1))]® =

Charge fluctuations: (¥(0)| @* |¥(0)) — (¥(0)| Q |¥(0))* = %SinQ(%)

Compute trace distance of k = 2 moment between ensembles



Numerical confirmation

o0 1 Random, charge-conserving U(1) circuits

Time

Usyo Initial product state: |¥(0)) = [(cos6|0) + sin|1)) ® (sin §]0) + cos 9|1))]@f%

e Charge fluctuations: (¥(0)| Q* |(0)) — (¥(0)| Q |¥(0))* = %sin2(29)

Compute trace distance of k = 2 moment between ensembles

0 = z/20; z-basis measurement 0 = 0 (Neel); x-basis measurement
Target: Generalized Scrooge ensemble A(z)( ) Target: Haar ensemble
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Spins/Fermions

Bosonic CV

Summary of current understanding of
deep thermalization

Constraints/
Conservation
law

None
e.g. Floquet, circuits

Charge
distribution in
initial state

N/A

Measurements in
charge revealing basis

N/A

Measurements in charge
non-revealing basis

None; Q = N/2

None; Q # N/2
Equilibrium; fu = 0
Equilibrium; fu # 0

General

@QA p(QA) %Haar(QA)
GBQA p(QA) gHaar(QA)

%Scr.
gGen. Scr. depending on p(Q)

Gaussian, U(1)

Product state (Gaussian) at

p=0

Product state (Gaussian) at

p#0

Squeezed product state
with mean number v

EOPGen. Scr. ~ 69EA p(EA) %Haar(EA)

%Generalized. Scr.

Measurements in any
Gaussian basis

gBos.

Gaus. Scr.

Measurements in
Fock basis

Non-Gaussian,
General




Conclusions

* Novel equilibration universality (Deep Thermalization) beyond standard quantum
thermalization

* Underpinned by Generalized Maximum Entropy Principles from quantum
information theory

* Rich host of emergent universal limiting ensembles constrained by symmetries

Quantum
Computation
and Quantum a

B informatioh Take-home message:

New paradigms in quantum many-boqy
dynamics from quantum information theory!

e Questions: Time-scales of deep thermalization; how is this related to
entanglement and magic generation? Connections to OTOCs, quantum error
correction? Applications for quantum information science?

Thank you for your attention!
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Quantum Physics

[Submitted on 15 Feb 2024]
Extracting randomness from quantum 'magic'

Christopher Vairogs, Bin Yan

Magic is a critical property of quantum states that plays a pivotal role in fault-tolerant quantum computation.
Simultaneously, random states have emerged as a key element in various randomized techniques within contemporary
guantum science. In this study, we establish a direct connection between these two notions. More specifically, our
research demonstrates that when a subsystem of a quantum state is measured, the resultant projected ensemble of the
unmeasured subsystem can exhibit a high degree of randomness that is enhanced by the inherent 'magic' of the
underlying state. We demonstrate this relationship rigorously for quantum state 2-designs, and present compelling
numerical evidence to support its validity for higher-order quantum designs. Our findings suggest an efficient approach
for leveraging magic as a resource to generate random quantum states.
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 Questions: Time-scales of deep thermalization; how is this related to
entanglement and magic generation? Connections to OTOCs, quantum error
correction? Applications for quantum information science?

Thank you for your attention!
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o Assume dynamics conserves charge [U, 0] =0, O = Z o;
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.Oé.0.0.0.0
.Oé0.00...O
O.é0.000...
O.é.0.00.0.

ofel T X YoloX XX
o@oooooooo



[Chang, Shrotriya, WWH, lppoliti, 2408.15325]

Charge conservation: case study |

« Assume dynamics conserves charge [U, Q0] =0, QO = Z o;

e Assume initial state is random but has definite charge (),

(A

£ e Measure B in the computational basis z
® O . COeOO0O0 “charge revealing basis”

00000000080
o JoX YoXeXoX X X
000000000

ofel T X YoloX XX
o@oooooooo



[Chang, Shrotriya, WWH, lppoliti, 2408.15325]

Charge conservation: case study |

« Assume dynamics conserves charge [U, Q0] =0, QO = Z o;

e Assume initial state is random but has definite charge (),
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® O . COeOO0O0 “charge revealing basis”
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Charge conservation: case study |

« Assume dynamics conserves charge [U, Q0] =0, QO = Z o;

e Assume initial state is random but has definite charge (),

(A

e Measure B in the computational basis z
“charge revealing basis”

e Each bit-string z3 has a charge QO

ofel T X YoloX XX

oXeX X X X YeJeoX Yo
5 zgst. Qg =5



[Chang, Shrotriya, WWH, lppoliti, 2408.15325]
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e Assume initial state is random but has definite charge (),
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e Measure B in the computational basis z
“charge revealing basis”

e Each bit-string z3 has a charge QO
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[Chang, Shrotriya, WWH, lppoliti, 2408.15325]

Charge conservation: case study |
o Assume dynamics conserves charge [U, 0] =0, O = Z o;

e Assume initial state is random but has definite charge (),

(A

e Measure B in the computational basis z
“charge revealing basis”

e Each bit-string z3 has a charge QO

e This immediately tells us | y,(z3)) has

charge O, = 0 — Op

+ . ©00000@® ° Wethusexpect limiting projected |
ensemble to block-diagonal (direct-sum):
+ COC00 00000 00

+... Q4 = 0 zgst. Op =3 %PE — €BQA p(QA)%Haar,A(QA)

We rigorously prove this statement in our paper
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« Assume dynamics conserves charge [U, Q0] =0, QO = Z o;

e Assume initial state is random but has definite charge (),
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e Each bit-string X yields a state

| w,(xg)) but we do not gain more
information about its character
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Charge conservation: case study ||
o Assume dynamics conserves charge [U, 0] =0, O = Z o;

e Assume initial state is random but has definite charge (),

N e Measure B in the computational basis x
0000000000 “charge non-revealing basis”

__NOJON NONON N N NO

e Each bit-string X yields a state

00000000 e e | w,(x5)) but we do not gain more

iInformation about its character

CeeO0e00e0e . We thus expect limiting projected
0000 @000 0O ensemble to be a single Scrooge:
0Oee 88O 60 & pr — %Scr,A




[Chang, Shrotriya, WWH, lppoliti, 2408.15325]

Charge conservation: case study ||

« Assume dynamics conserves charge [U, Q0] =0, QO = Z o;

e Assume initial state is random but has definite charge (),

® O
® O
O@
O@®
O O

O O

0

mx
. NON NON NON NO

C000000o
ON NONONON N N
0000000 e

00000000
00 0000 00

e Measure B in the computational basis x
“charge non-revealing basis”

e Each bit-string X yields a state

| w,(xg)) but we do not gain more
information about its character

* We thus expect limiting projected
ensemble to be a single Scrooge:

& pp — %Scr,A

Q: General theory incorporating charge fluctuations?
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[Chang, Shrotriya, WWH, lppoliti, 2408.15325]

Theory for charge revealing measurements

(Based on calculations using replica trick)

Let the initial state have charge fluctuations p(Q), i.e., | V) = Zp(Q) | D)
Q
Measure in a charge revealing basis (e.g. z), to get zz which carries charge Qp.

This occurs with probability 7(Qg) = Z n(Qgz| O)p(Q)
Q

Knowledge of Oy updates our belief of Q,: #(Q, | Op) = n(Qg| O)p(Q)/n(Qp)

Average state should be p,(Qp) = Z Paar.A(Q)7(Q, | Op) which unravels
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Theory for charge revealing measurements

(Based on calculations using replica trick)

Let the initial state have charge fluctuations p(Q), i.e., | V) = Zp(Q) | D)
Q
e Measure in a charge revealing basis (e.g. 7), to get zz which carries charge Qp.

This occurs with probability 7(Qg) = Z n(Qgz| O)p(Q)
Q

» Knowledge of Qg updates our belief of Q4: 7(Q4 | Op) = 7(Qg| O)p(QO)/7(Qp)

Average state should be p,(Qp) = Z Paar.A(Q)7(Q, | Op) which unravels

Oy
into a Scrooge distribution &... (p4(0Op))

* Limiting distribution will be a convex sum over Scrooges (generalized Scrooge):

& A
& pp — Z (Qp) E 5. (PA(Op))
Op

K Note: it is universal, depending only on p(Q) )
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(Partial) Theory for charge non-revealing
measurements

Let the initial state have definite charge p(Q) = 5Q»Qo

Measure in a charge non-revealing basis (e.g. x), to get x

This does not yield new information about charge on A, so prior and posterior

robabilities are both 7(Q, | O,) = (NA> Np N B
p A o\ -04/\ g

Averaged state should be p, = Z 704 | O0)Praar(O4)
Oy
Limiting distribution will be single Scrooge (stingy unraveling of p,)

4 )
%PE e %Scr. (pA)

K Note when Q, = N/2, &.,. = &y 0 )




